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Abstract

This work is concerned with the determination of both macroscopic and microscopic deformations, motions,

stresses, as well as electromagnetic fields developed in the material body due to external loads of thermal, mechanical,

and electromagnetic origins. The balance laws of mass, microinertia, linear momentum, moment of momentum, energy,

and entropy for microcontinuum are integrated with the Maxwell�s equations. The constitutive theory is constructed.

The finite element formulation of micromorphic electromagnetic physics is also presented. The physical meanings of

various terms in the constitutive equations are discussed.
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1. Introduction

Optical phonon branches exist in all crystals that have more than one atom per primitive unit cell. Under

an electromagnetic field it is the optical modes that are excited. Optics is a phenomenon that necessitates the
presence of an electromagnetic field.

While classical continuum theory is the long acoustic wave limit, lattice dynamics analysis has shown

that micromorphic theory yields phonon dispersion relation similar to those from atomistic calculations

and experimental measurements (Chen and Lee, 2003a). It provides up to 12 phonon dispersion relations,

including 3 acoustic and 9 optical branches. The optical phonons in micromorphic theory describe the

internal displacement patterns within the microstructure of material particles, consistent with the internal

atomic displacements in the optical modes.

The physics of mechanical and electromagnetic coupling is hence related to the optical vibrations,
and the continuum description of electrodynamics naturally leads to a micromorphic electromagnetic

theory.
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2. Physical picture of micromorphic theories

Micromorphic Theory, developed by Eringen and Suhubi (1964) and Eringen (1999), constitutes

extensions of the classical field theories concerned with the deformations, motions, and electromagnetic (E–
M) interactions of material media, as continua, in microscopic time and space scales. In terms of a physical

picture, a material body is envisioned as a collection of a large number of deformable particles; each particle

possesses finite size and microstructure. The particle has the independent degrees of freedom for both

stretches and rotations (micromorphic),and for rotations only (micropolar), in addition to the classical

translational degrees of freedom of the center. It may be considered as a polyatomic molecule, a primitive

unit cell of a crystalline solid, or a chopped fiber in a composite, et al. As shown in Fig. 1, a generic particle

P is represented by its position vector X (mass center of P ) and by a vector N attached to P representing the

microstructure of P in the reference state at time t ¼ 0. The motions that carry PðX ;NÞ to P ðx; n; tÞ in the
spatial configuration (deformed state) at time t can be expressed as
xk ¼ xkðX ; tÞ; ð2:1Þ

nk ¼ vkKðX ; tÞNK : ð2:2Þ

It is seen that the macromotion, Eq. (2.1), accounts for the motion of the centroid of the particle while

the micromotion, Eq. (2.2), specifies the changing of orientation and deformation for the inner structures of

the particle. The inverse motions can be written as
XK ¼ XKðx; tÞ; ð2:3Þ

NK ¼ �vKkðx; tÞnk; ð2:4Þ

where
vkK�vKl ¼ dkl; �vKkvkL ¼ dKL: ð2:5Þ
3. The E–M balance laws

The balance laws of the micromorphic electromagnetic continuum consist of two parts: the thermo-

mechanical part and the electromagnetic (E–M) parts. The E–M balance laws are the well-known Max-

well�s equations written as
r �D ¼ qe or Dk;k ¼ qe; ð3:1Þ
P(x,ξ
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Fig. 1. The macro- and micro-motion of a material particle.
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r� E þ 1

c
oB

ot
¼ 0 or eijkEk;j þ

1

c
oBi

ot
¼ 0; ð3:2Þ

r � B ¼ 0 or Bk;k ¼ 0; ð3:3Þ

r �H � 1

c
oD

ot
¼ 1

c
J or eijkHk;j �

1

c
oDi

ot
¼ 1

c
Ji; ð3:4Þ
where D is the dielectric displacement vector, B the magnetic flux vector, E the electric field vector, H the

magnetic field vector, J the current vector, and qe the free charge density. The divergence of Eq. (3.4) with
the use of Eq. (3.1) leads to
r � J þ oqe

ot
¼ 0; ð3:5Þ
which is the law of conservation of charge. The divergence of Eq. (3.2) gives
o

ot
ðr � BÞ ¼ 0
which is a duplicate of Eq. (3.3).

The polarization vector, P, and the magnetization vector, M, are defined as
P � D� E; ð3:6Þ

M � B �H : ð3:7Þ

The E–M vectors, D, E, P, B, H , M, J, are all referred to a fixed laboratory frame RC. The Galilean

transformations of inertial frames form a group that consists of time-independent spatial rotations and

pure Galilean transforms, i.e.,
x�i ¼ Rijxj þ Vit þ bi; ð3:8Þ
where
RikRjk ¼ RkiRkj ¼ dij and detðRÞ ¼ 1: ð3:9Þ

The requirement of the form-invariance of the Maxwell�s equations under the Galilean transformations

leads to the following transformations (Eringen and Maugin, 1990)
qe
� ¼ qe; ð3:10Þ

J� ¼ J � qev; ð3:11Þ

P� ¼ P; ð3:12Þ

M� ¼ M þ 1

c
v� P; ð3:13Þ

E� ¼ E þ 1

c
v� B; ð3:14Þ

B� ¼ B � 1

c
v� E; ð3:15Þ
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D� ¼ Dþ 1

c
v� B; ð3:16Þ

H� ¼ H � 1

c
v�D; ð3:17Þ
where the quantities, qe
�
, J�, P�, M�, E�, B�, D�, H�, are referred to a co-moving frame RG with material

particles of the body having velocities, v. A typical nonrelativistic feature of these transformations, Eqs.

(3.10)–(3.17), is the asymmetry between Eq. (3.12) and Eq. (3.13), which says, according to Galilean rel-

ativity, a polarized moving body will appear to be magnetized, whereas a magnetized moving body will not

appear to be polarized. Although it is this lack of symmetry that stimulated the study of relativistic elec-

trodynamics in the early 20th century, few observable conclusions can be made due to the difficulty of

obtaining sufficiently high velocities for material media. The fully symmetric relativistic laws replacing Eqs.
(3.12) and (3.13) may be found in Jackson (1975).
4. The thermomechanical balance laws

The thermomechanical balance laws were originally obtained by Eringen and Suhubi (1964) by means of

a ‘‘microscopic space-averaging’’ process. Later, Eringen (1999) re-derived the balance laws by starting with

the following expression for the kinetic energy of a material particle
K ¼ 1

2
qðvivi þ ikltiktilÞ; ð4:1Þ
and, after the energy balance law is obtained, by requiring it to be form-invariant under the generalized

Galilean transformation to yield the balance laws of linear momentum and moment of momentum. Re-

cently, Chen et al. (2002) and Chen and Lee (2003b,c) identified all the instantaneous mechanical variables,

corresponding to those in micromorphic theory, in phase space; derived the corresponding field quantities
in physical space through the statistical ensemble averaging process; invoked the time evolution law and the

generalized Boltzmann transport equation for conserved properties to obtain the local balance laws of

mass, microinertia, linear momentum, moment of momentum, and energy for microcontinuum field theory.

In the case that the external field is the gravitational field, the balance laws obtained by Chen et al. (2002)

and Chen and Lee (2003b,c) in a bottom-up approach agree perfectly with those obtained by Eringen and

Suhubi (1964) and Eringen (1999) in a top–down approach.

The balance laws of micromorphic continuum with E–M interactions can be expressed as
_qþ qr � v ¼ 0 or _qþ qvi;i ¼ 0; ð4:2Þ

di

dt
¼ i � t0 þ t � i or

dikl
dt

¼ ikmtlm þ ilmtkm; ð4:3Þ

r � t þ qðf � _vÞ þ F ¼ 0 or tji;j þ qðfi � _viÞ þ Fi ¼ 0; ð4:4Þ

r � kþ t0 � s0 þ qðl � rÞ þ L ¼ 0 or kklm;k þ tml � sml þ qðllm � rlmÞ þ Llm ¼ 0; ð4:5Þ

q _e ¼ k..
.
rtþ t : rvþ ðs� t � LÞ0 : tþr � qþ qhþ w
or
q _e ¼ kklmtlm;k þ tklvl;k þ ðskl � tkl � LklÞtlk þ qk;k þ qhþ w; ð4:6Þ
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where q, v, i, t, t, s ¼ s0, k, e, q are the mass density, velocity, microinertia, microgyration, Cauchy

stress, microstress average, moment stress, internal energy, and heat input, respectively; f ; l; h repre-

sent body force, body moment and heat source of mechanical origin, respectively. The spin inertia r

is defined as
rkl ¼ imlð _tkm þ tkntnmÞ ð4:7Þ

and the body force, body moment, and energy source of E–M origin are given as (Eringen and Maugin,

1990; Eringen, 1999; De Groot and Suttorp, 1972):
F ¼ qeE� þ ðP � rÞE� þ ðrBÞ �M� þ 1

c
fJ� þ _P � ðP � rÞvþ Pðr � vÞg � B; ð4:8Þ

L ¼ P � E� � B �M�; ð4:9Þ

W ¼ E� � ð _P þ Pr � vÞ �M� � _B þ J� � E�: ð4:10Þ

The second law of thermodynamics, also referred to as the Clausius–Duhem inequality, is written as
q _g�r � ðq=hÞ � qh=hP 0; ð4:11Þ

where g is the entropy density and h the absolute temperature. Now the generalized Helmholtz�s free energy
w is introduced as
w � e� hg� E� � P=q: ð4:12Þ

Then the Clausius–Duhem (C–D) inequality can be expressed as
�qð _wþ g _hÞ þ kijktjk;i þ tijvj;i þ ðsij � tij � PiE�
j þ BiM�

j Þtji þ
1

h
qih;i � Pi _E�

i �M�
i
_Bi þ J �

i E
�
i P 0: ð4:13Þ
5. Constitutive relations

The fundamental laws of micromorphic electromagnetic continuum consist of a system of 27 partial

differential equations, Eqs. (3.1)–(3.4), (4.2)–(4.6), and one inequality, Eq. (4.13). There are 83 unknowns:

q, ikl, vk, tkl, h, g, e, tkl, skl ¼ slk, kklm, qk, qe, Ek, Pk, Bk,Mk, Jk, considering that the body force, body moment,

and heat source are given. Therefore 56 constitutive relations are needed to determine the dynamics of the

thermomechanical-electromagnetic system.

The generalized Lagrangian strain tensors of micromorphic theory are defined as
aKL � xk;K�vLk � dKL; ð5:1Þ

bKL � vkKvkL � dKL ¼ bLK ; ð5:2Þ

cKLM � �vKkvkL;M ; ð5:3Þ
and the strain rates can be obtained as
_aKL � ðvl;k � tlkÞxk;K�vLl; ð5:4Þ

_bKL ¼ ðtkl þ tlkÞvkKvlL ¼ _bLK ; ð5:5Þ

_cKLM ¼ tkl;m�vKkvlLxm;M : ð5:6Þ
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It can be easily proved that the Lagrangian strains and their material time rates of any order are

objective, and hence they are suitable for being employed as independent constitutive variables in the

development of a constitutive theory. In the same spirit, define the Lagrangian forms of the electric field

vector and the magnetic flux vector as
E�
K � E�

kxk;K ; ð5:7Þ

BK ¼ Bkxk;K ; ð5:8Þ
and their material time rates are obtained
_E�
K ¼ ð _E�

k þ E�
l vl;kÞxk;K ; ð5:9Þ

_BK ¼ ð _Bk þ Blvl;kÞxk;K ; ð5:10Þ
The generalized 2nd order Piola–Kirchhoff stress tensors of micromorphic theory are defined as
TKL � jtklXk;kvlL; ð5:11Þ

SKL � jskl�vKk�vLl=2; ð5:12Þ

CKLM � jkmklXM ;mvkK�vLl; ð5:13Þ
where j � detðxk;KÞ is the Jacobian of the deformation gradient. It is straightforward to show
TKL _aKL þ SKL _bKL þ CKLM _cKLM ¼ jftklðvl;k � tlkÞ þ skltðklÞ þ kklmtlm;kg; ð5:14Þ
which means fT;S;Cg are the thermodynamic conjugates of fa; b; cg. Similarly, the Lagrangian forms of
the heat input, polarization, magnetization, and current are defined as
QK � jqkXK;k; ð5:15Þ

PK � jPkXK;k; ð5:16Þ

M�
K � jM�

k XK;k; ð5:17Þ

J �
K � jJ �

k XK;k: ð5:18Þ
Now, the Clausius–Duhem inequality (4.13) can be rewritten as
�q0ð _wþ g _hÞ þ CKLM _cKLM þ Tm
KL _aKL þ Sm

KL
_bKL þ

1

h
QKh;K � PK _E�

K �M�
K
_BK þ J �

KE
�
K P 0; ð5:19Þ
where
tmkl � tkl þ PkE�
l þM�

k Bl; ð5:20Þ

smkl � skl þM�
k Bl þM�

l Bk ¼ smlk; ð5:21Þ

Tm
KL � jtmklXK;kvlL; ð5:22Þ

Sm
KL � jsmkl�vKk�vLl=2; ð5:23Þ
where the superscript �m� refers to the mechanical parts, i.e., if there is no E–M interaction, then SKL ¼ Sm
KL,

tkl ¼ tmkl. Note that the mechanical part of the microstress average Sm is also symmetric.
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In this work, the independent and dependent constitutive variables are set to be
Y ¼ fa; b; c; h;rh;E�;B;Xg; ð5:24Þ

Z ¼ fTm;Sm;C;w; g;Q;P;M�; J�g; ð5:25Þ

and, following the axiom of equipresence, at the outset the constitutive relations are written as
Z ¼ ZðYÞ: ð5:26Þ

It is noted that there are 56 dependent constitutive variables in Z. Both Y and Z are presented in

Lagrangian forms, hence, the axiom of objectivity is automatically satisfied. Substituting Eq. (5.26) into the

C–D inequality (5.19), it follows
� q� ow
oh

�
þ g

�
_h� q� ow

oh;K
_h;K þ Tm

KL

�
� q� ow

oaKL

�
_aKL þ Sm

KL

�
� q� ow

obKL

�
_bKL þ CKLM

�
� q� ow

ocKLM

�
_cKLM

� PK

�
þ q� ow

oE�
K

�
_E�
K � M�

K

�
þ q� ow

oBK

�
_BK þ 1

h
QKh;K þ J �

KE
�
K P0: ð5:27Þ
Since the inequality (5.27) is linear in _h, r _h, _a, _b, _c, _E�, _B, it holds if and only if
w ¼ wða; b; c; h;E�;B;XÞ; ð5:28Þ

g ¼ � ow
oh

; ð5:29Þ

Tm ¼ q� ow
oa

; ð5:30Þ

Sm ¼ q� ow
ob

; ð5:31Þ

C ¼ q� ow
oc

; ð5:32Þ

P ¼ �q� ow
oE� ; ð5:33Þ

M� ¼ �q� ow
oB

; ð5:34Þ

Q � rhþ hJ� � E� P 0; ð5:35Þ

these constitutive relations, Eqs. (5.28)–(5.35), are further subjected to the axioms of material invariance

and time reversal. It may be stated as: the constitutive response functionals must be form-invariant with

respect to a group of transformations of the material frame of reference fX ! X�g and microscopic time

reversal ft ! �tg representing the material symmetry conditions and these transformations must leave the

density and charge at ðX; tÞ unchanged (Eringen and Maugin, 1990). The magnetic symmetry properties of

solids cannot be discussed rationally by means of three-dimensional point groups only since magnetism is

the result of the spin magnetic moment of electrons, which changes sign upon the time reversal. In other

words, diamagnetic and paramagnetic crystals do not exhibit any orderly distribution of their spin magnetic
moments, and are therefore �time symmetric�. The crystallographic point group is enough for the discussion

of their material symmetries; on the other hand, for ferromagnetic, ferrimagnetic and antiferromagnetic
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materials, which are characterized by an orderly distribution of spin magnetic moment, an additional

symmetry operator is needed to take care of the time reversal. For a complete account of this subject,

interested readers are referred to Shubnikov and Belov (1964) and Kiral and Eringen (1990).
6. Finite element formulation

The energy equation (4.6) can now be written as
q�h _g� QK;K � q�h� J �
KE

�
K ¼ 0; ð6:1Þ
Multiply Eq. (6.1) by the variational temperature dh and then integrate over the undeformed volume, to

yield
 Z
V
q�h _gdhdV þ

Z
V
QKdh;K dV ¼

Z
V
UdhdV þ

Z
Sq

Q�dhdS; ð6:2Þ
where
U � q�hþ J �
KE

�
K ; ð6:3Þ
and
Q� � QKNK ; ð6:4Þ

is the heat input specified at Sq, part of the surface S that enclosing the volume V and NK is the outward

normal to S. It is noted that Sq [ Sh ¼ S, where Sh is part of the surface on which the temperature is

specified.

The balance laws of linear momentum and moment of momentum, Eqs. (4.4) and (4.5), can be expressed
in the Lagrangian forms as
ðTm
KL�vLiÞ;K þ q�ð~fi � _viÞ ¼ 0 ð6:5Þ

ðCLMK�vLivjMÞ;K þ jðtmji � smji Þ þ q�ðlij � rijÞ ¼ 0 ð6:6Þ
where
~fi ¼ fi þ fFi � ðPjE�
i þM�

j BiÞ;jg=q: ð6:7Þ
Multiply Eq. (6.5) and Eq. (6.6) by the variational velocity vector dvi and the variational microgyration

tensor dtij, respectively, and then integrate the sum over the undeformed volume, to get
Z
V
fCKLMd _cKLM þ Tm

KLd _aKL þ Sm
KLd

_bKLgdV þ
Z
V
q�f_vidvi þ rijdtijgdV

¼
Z
V
q�f~fidvi þ ~lijdtijgdV þ

Z
St

T �
i dvi dS þ

Z
SC

C�
ijdtij dS; ð6:8Þ
where
T �
i � Tm

KL�vLiNK ; ð6:9Þ

C�
ij � CLMK�vLivjMNK ; ð6:10Þ
are the surface load and surface moment specified at St and SC, respectively. It is noted that
S ¼ St [ Sv ¼ SC [ St; ð6:11Þ
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where the velocity and the microgyration are specified on Sv and St, respectively. In this finite element

formulation no restrictive assumption has been made to the magnitude of any independent constitutive

variables. The results are valid for coupled thermomechanical-electromagnetic phenomena. It is seen, from

Eqs. (6.1) and (6.8), that to proceed further one needs the explicit constitutive expressions for the entropy g,
the heat input vector Q, and the generalized 2nd order Piola–Kirchhoff stress tensor Tm, Sm, and C.
7. Linear constitutive equations

To derive the linear constitutive equations for micromorphic electromagnetic continuum, first, let the

Helmholtz�s free energy density, Eq. (5.28), be expanded as a polynomial up to second order in terms of its

arguments
q0w ¼ q0w0 � q0g0T þ T 0
KLaKL þ S0

KLbKL þ C0
KLMcKLM � P 0

KE
�
K �M0

KBK � 1

2
q0cT 2=T 0 � a1KLTaKL � a2KLTbKL

� a3KLMT cKLM � a4KTE
�
K � a5KTBK þ 1

2
A1
KLMNaKLaMN þ A4

KLMNaKLbMN þ A5
KLMNPaKLcMNP

� B1
KLMaKLE

�
M � C1

KLMaKLBM þ 1

2
A2
KLMNbKLbMN þ A6

KLMNPbKLcMNP � B2
KLMbKLE

�
M

� C2
KLMbKLBM þ 1

2
A3
KLMNPQcKLMcNPQ � B3

KLMNcKLME
�
N � C3

KLMNcKLMBN � 1

2
D1

KLE
�
KE

�
L

� 1

2
D2

KLBKBL �D3
KLE

�
KBL; ð7:1Þ
where T 0 is the reference temperature,
h ¼ T 0 þ T ; T 0 > 0; jT j � T 0; ð7:2Þ

A1
KLMN ¼ A1

MNKL; ð7:3Þ

A2
KLMN ¼ A2

MNKL ¼ A2
LKMN ¼ A2

KLNM ; ð7:4Þ

A3
KLMNPQ ¼ A3

NPQKLM ; ð7:5Þ

A4
KLMN ¼ A4

KLNM ; ð7:6Þ

A6
KLMNP ¼ A6

LKMNP ; ð7:7Þ

S0
KL ¼ S0

LK ; ð7:8Þ

a2KL ¼ a2LK ; ð7:9Þ

B2
KLM ¼ B2

LKM ; ð7:10Þ

C2
KLM ¼ C2

LKM ; ð7:11Þ

D1
KL ¼ D1

LK ; ð7:12Þ

D2
KL ¼ D2

LK : ð7:13Þ
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Then Eqs. (5.29)–(5.34) leads to
g ¼ g0 þ cT=T 0 þ fa1KLaKL þ a2KLbKL þ a3KLMcKLM þ a4KE
�
K þ a5KBKg=q0; ð7:14Þ

Tm
KL ¼ T 0

KL � a1KLT þ A1
KLMNaMN þ A4

KLMNbMN þ A5
KLMNPcMNP � B1

KLME
�
M � C1

KLMBM ; ð7:15Þ

Sm
KL ¼ S0

KL � a2KLT þ A2
KLMNbMN þ A4

MNKLaMN þ A6
KLMNPcMNP � B2

KLME
�
M � C2

KLMBM ; ð7:16Þ

CKLM ¼ C0
KLM � a3KLMT þ A3

KLMNPQcNPQ þ A5
NPKLMaNP þ A6

NPKLMbNP � B3
KLMNE

�
N � C3

KLMNBN ; ð7:17Þ

PK ¼ P 0
K þ a4KT þ B1

LMKaLM þ B2
LMKbLM þ B3

LMNKcLMN þ D1
KLE

�
L þ D3

KLBL; ð7:18Þ

M�
K ¼ M0

K þ a5KT þ C1
LMKaLM þ C2

LMKbLM þ C3
LMNKcLMN þ D2

KLBL þ D3
LKE

�
L; ð7:19Þ
where g0, fT0;S0;C0g, P0, M0 are the initial entropy, stresses, polarization, and magnetization, respec-

tively; a1, a2, a3 are the thermal stresses moduli; a4, a5 are the pyroelectric and pyromagnetic moduli; c is the
heat capacity; Ai (i ¼ 1; 2; . . . ; 6) are the generalized elastic moduli; B1, B2, B3 are the generalized piezo-

electric moduli; C1, C2, C3 are the generalized piezomagnetic moduli; D1 is the dielectric susceptibility; D2

is the magnetic susceptibility; D3 is the magnetic polarizability.

Now, in view of the Clausius–Duhem inequality (5.35), the linear constitutive equations for the heat
input and the current can be obtained as
QK ¼ H 1
KLh;L þ H 3

KLE
�
L; ð7:20Þ

hJ �
K ¼ H 2

KLE
�
L þ H 4

KLh;L; ð7:21Þ
where H1 is the heat conductivity, H2 is the electric conductivity, H3 indicates the Peltier effect, H4 indi-

cates the Seebeck effect. If the Onsager postulate is followed, then there exists a dissipation function

Uðrh
h ;E�Þ which is nonnegative with an absolute minimum at rh ¼ E� ¼ 0 and yields
QK ¼ oU
oðrh=hÞ ; ð7:22Þ

J �
K ¼ oU

oE�
K

; ð7:23Þ
This implies
H 1
KL ¼ H 1

LK ; H 2
KL ¼ H 2

LK ; ð7:24Þ

H 3
KL ¼ H 4

LK � GKL; ð7:25Þ
and
H � H1 G
G 0 H2

����
���� ð7:26Þ
is positive definite. All the above-mentioned material moduli may be functions of the Lagrangian coor-

dinate X and the reference temperature T 0.

On the other hand, from Eqs. (5.24)–(5.26), it is seen that in general Q and J� are functions of the three

generalized Lagrangian strains, temperature, temperature gradient, electric field, magnetic flux, and the
Lagrangian coordinate. For isotropic material in a simpler case, i.e., neglecting the effect of the third order

strain tensor c, the current and the heat input can be rewritten as
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Q ¼ Qðe; b;rh;E�;B;S;XÞ; ð7:27Þ

J� ¼ J�ðe; b;rh;E�;B;S;XÞ; ð7:28Þ
where
eKL �
1

2
ðaKL þ aLK þ bKLÞ ¼ eLK ; ð7:29Þ

SK � 1

2
eKLMa½LM 	: ð7:30Þ
It should be remarked that (1) eKL will be reduced to uðK;LÞ––the classical macro-strain tensor in the case

of small deformation, and (2) B and S are axial vectors and transformed as
�B ¼ RB detðRÞ; S ¼ RS detðRÞ; ð7:31Þ
while the absolute vectors E� and rh are transformed as
�rjh � oh
o�X

¼ Rrh; �E� ¼ RE�; ð7:32Þ
where
�X ¼ RX : ð7:33Þ
Now, according to Wang�s representation theorem for isotropic functions (Wang, 1970, 1971), it follows
Q ¼ c1E
� þ c2rhþ c3eE

� þ c4erhþ c5e2E
� þ c6e2rhþ c7bE

� þ c8brhþ c9b
2E� þ c10b

2rh

þ c11B � E� þ c12B �rhþ c13S � E� þ c14S �rhþ c15ðeb� beÞE� þ c16ðeb� beÞrh

þ c17½ðB � BÞE� � ðB � E�ÞB	 þ c18½ðB � BÞrh� ðB � rhÞB	 þ c19½ðS � SÞE� � ðS � E�ÞS	
þ c20½ðS � SÞrh� ðS � rhÞS	 þ c21½ðB � E�ÞS � ðS � E�ÞB	 þ c22½ðB � rhÞS � ðS � rhÞB	
þ c23½eðE� � BÞ � ðeE�Þ � B	 þ c24½eðrh� BÞ � ðerhÞ � B	 þ c25½eðE� � SÞ � ðeE�Þ � S	
þ c26½eðrh� SÞ � ðerhÞ � S	 þ c27½bðE� � BÞ � ðbE�Þ � B	 þ c28½bðrh� BÞ � ðbrhÞ � B	
þ c29½bðE� � SÞ � ðbE�Þ � S	 þ c30½bðrh� SÞ � ðbrhÞ � S	; ð7:34Þ

J� ¼ d1E
� þ d2rhþ d3eE

� þ d4erhþ d5e2E
� þ d6e2rhþ d7bE

� þ d8brhþ d9b
2E� þ d10b

2rh

þ d11B � E� þ d12B �rhþ d13S � E� þ d14S �rhþ d15ðeb� beÞE� þ d16ðeb� beÞrh

þ d17½ðB � BÞE� � ðB � E�ÞB	 þ d18½ðB � BÞrh� ðB � rhÞB	 þ d19½ðS � SÞE� � ðS � E�ÞS	
þ d20½ðS � SÞrh� ðS � rhÞS	 þ d21½ðB � E�ÞS � ðS � E�ÞB	 þ d22½ðB � rhÞS � ðS � rhÞB	
þ d23½eðE� � BÞ � ðeE�Þ � B	 þ d24½eðrh� BÞ � ðerhÞ � B	 þ d25½eðE� � SÞ � ðeE�Þ � S	
þ d26½eðrh� SÞ � ðerhÞ � S	 þ d27½bðE� � BÞ � ðbE�Þ � B	 þ d28½bðrh� BÞ � ðbrhÞ � B	
þ d29½bðE� � SÞ � ðbE�Þ � S	 þ d30½bðrh� SÞ � ðbrhÞ � S	; ð7:35Þ
where ci and di (i ¼ 1; 2; . . . ; 30) are functions of h, X , and the invariants made from two 2nd order

symmetric tensors e and b, two absolute vectors E� andrh, and two axial vectors B and S. The constitutive
functions, ci and di, are subjected to the Clausius–Duhem inequality (5.35).

From Eqs. (7.34) and (7.35), the Peltier effect (electric field producing heat flow) and the Seebeck effect

(temperature gradient producing current) are clearly seen. Also, the second order vectorial effects are
noticed: (1) c3, c5, c7, and c9 indicate that strains produce an anisotropic Peltier effect, (2) c12 shows that

heat flows perpendicular to B and rh, which is the Righi–Leduc effect, (3) c11 shows that heat flows
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perpendicular to B and E�, which is the Ettingshausen effect, (4) d4, d6, d8, and d10 indicates that strains

produce an anisotropic Seebeck effect, (5) d11 gives the Hall effect––current flows perpendicular to B and E�,

and (6) d12 gives the Nernst effect––current flows perpendicular to B and rh. Furthermore, the axial vector

S, which is equivalent to the anti-symmetric strain tensor representing the difference between the macro-
motion and the micro-motion, has a similar effect as the magnetic flux vector B. It is interesting to see that if

micromorphic theory is reduced to classical continuum theory, then Eqs. (7.34) and (7.35) become
Q ¼ c1E
� þ c2rhþ c3eE

� þ c4erhþ c5e2E
� þ c6e2rhþ c11B � E� þ c12B �rh

þ c17½ðB � BÞE� � ðB � E�ÞB	 þ c18½ðB � BÞrh� ðB � rhÞB	 þ c23½eðE� � BÞ � ðeE�Þ � B	
þ c24½eðrh� BÞ � ðerhÞ � B	; ð7:36Þ

J� ¼ d1E
� þ d2rhþ d3eE

� þ d4erhþ d5e2E
� þ d6e2rhþ d11B � E� þ d12B �rh

þ d17½ðB � BÞE� � ðB � E�ÞB	 þ d18½ðB � BÞrh� ðB � rhÞB	 þ d23½eðE� � BÞ � ðeE�Þ � B	
þ d24½eðrh� BÞ � ðerhÞ � B	: ð7:37Þ
The differences between Eq. (7.34) and Eq. (7.36) and between Eq. (7.35) and Eq. (7.37) are the effects

due to the microstructure and the micro-motion.
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