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Abstract

This work is concerned with the determination of both macroscopic and microscopic deformations, motions,
stresses, as well as electromagnetic fields developed in the material body due to external loads of thermal, mechanical,
and electromagnetic origins. The balance laws of mass, microinertia, linear momentum, moment of momentum, energy,
and entropy for microcontinuum are integrated with the Maxwell’s equations. The constitutive theory is constructed.
The finite element formulation of micromorphic electromagnetic physics is also presented. The physical meanings of
various terms in the constitutive equations are discussed.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Optical phonon branches exist in all crystals that have more than one atom per primitive unit cell. Under
an electromagnetic field it is the optical modes that are excited. Optics is a phenomenon that necessitates the
presence of an electromagnetic field.

While classical continuum theory is the long acoustic wave limit, lattice dynamics analysis has shown
that micromorphic theory yields phonon dispersion relation similar to those from atomistic calculations
and experimental measurements (Chen and Lee, 2003a). It provides up to 12 phonon dispersion relations,
including 3 acoustic and 9 optical branches. The optical phonons in micromorphic theory describe the
internal displacement patterns within the microstructure of material particles, consistent with the internal
atomic displacements in the optical modes.

The physics of mechanical and electromagnetic coupling is hence related to the optical vibrations,
and the continuum description of electrodynamics naturally leads to a micromorphic electromagnetic
theory.
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2. Physical picture of micromorphic theories

Micromorphic Theory, developed by Eringen and Suhubi (1964) and Eringen (1999), constitutes
extensions of the classical field theories concerned with the deformations, motions, and electromagnetic (E—
M) interactions of material media, as continua, in microscopic time and space scales. In terms of a physical
picture, a material body is envisioned as a collection of a large number of deformable particles; each particle
possesses finite size and microstructure. The particle has the independent degrees of freedom for both
stretches and rotations (micromorphic),and for rotations only (micropolar), in addition to the classical
translational degrees of freedom of the center. It may be considered as a polyatomic molecule, a primitive
unit cell of a crystalline solid, or a chopped fiber in a composite, et al. As shown in Fig. 1, a generic particle
P is represented by its position vector X (mass center of P) and by a vector = attached to P representing the
microstructure of P in the reference state at time + = 0. The motions that carry P(X, Z) to P(x,&,¢) in the
spatial configuration (deformed state) at time ¢ can be expressed as

X :Xk(X,t), (21)

& = ww (X, 1) B (2.2)

It is seen that the macromotion, Eq. (2.1), accounts for the motion of the centroid of the particle while
the micromotion, Eq. (2.2), specifies the changing of orientation and deformation for the inner structures of
the particle. The inverse motions can be written as

XK :XK(xa t)) (23)

EK = ZKk(x7t)§ka (24)
where

Yk Xkt = Okts  Akadar = OKL- (2.5)

3. The E-M balance laws

The balance laws of the micromorphic electromagnetic continuum consist of two parts: the thermo-
mechanical part and the electromagnetic (E-M) parts. The E-M balance laws are the well-known Max-
well’s equations written as

V-D=gqg° or Dy=¢q, (3.1)

P(X, =) P(X.E,1)

1]

Fig. 1. The macro- and micro-motion of a material particle.
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1 0B 1 0B;
VXE+E§:0 or eijkEk,j+;E: 5 (32)
V-B=0 or By =0, (3.3)
1oD 1 1oD;, 1
v x H — Z E = EJ or e,j/-kat/- — E a[ = E«]l, (34)

where D is the dielectric displacement vector, B the magnetic flux vector, E the electric field vector, H the
magnetic field vector, J the current vector, and ¢° the free charge density. The divergence of Eq. (3.4) with
the use of Eq. (3.1) leads to

oq°
V-J—l—a—t—O, (3.5)

which is the law of conservation of charge. The divergence of Eq. (3.2) gives

which is a duplicate of Eq. (3.3).
The polarization vector, P, and the magnetization vector, M, are defined as

P=D-E, (3.6)

M=B-H. (3.7)

The E-M vectors, D, E, P, B, H, M, J, are all referred to a fixed laboratory frame R.. The Galilean
transformations of inertial frames form a group that consists of time-independent spatial rotations and
pure Galilean transforms, i.e.,

where
RikRjk = RkiRkj = 51’]' and det(R) =1. (39)

The requirement of the form-invariance of the Maxwell’s equations under the Galilean transformations
leads to the following transformations (Eringen and Maugin, 1990)

¢ =g, (3.10)
J=J— ¢, (3.11)
P =P (3.12)
. 1
M*:M—i—EvXP, (3.13)
i 1
E'=E-+-vxB, (3.14)
c
i 1
B =B —vxE, (3.15)

c
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1
D'=D+-vxB, (3.16)
C

H —H-1yxD (3.17)
C

where the quantities, ¢¢', J*, P*, M*, E*, B*, D*, H*, are referred to a co-moving frame R; with material
particles of the body having velocities, v. A typical nonrelativistic feature of these transformations, Eqs.
(3.10)—(3.17), is the asymmetry between Eq. (3.12) and Eq. (3.13), which says, according to Galilean rel-
ativity, a polarized moving body will appear to be magnetized, whereas a magnetized moving body will not
appear to be polarized. Although it is this lack of symmetry that stimulated the study of relativistic elec-
trodynamics in the early 20th century, few observable conclusions can be made due to the difficulty of
obtaining sufficiently high velocities for material media. The fully symmetric relativistic laws replacing Egs.
(3.12) and (3.13) may be found in Jackson (1975).

4. The thermomechanical balance laws

The thermomechanical balance laws were originally obtained by Eringen and Suhubi (1964) by means of
a “‘microscopic space-averaging’’ process. Later, Eringen (1999) re-derived the balance laws by starting with
the following expression for the kinetic energy of a material particle

1
K= EP(U:'U[' + iV Vin), @D

and, after the energy balance law is obtained, by requiring it to be form-invariant under the generalized
Galilean transformation to yield the balance laws of linear momentum and moment of momentum. Re-
cently, Chen et al. (2002) and Chen and Lee (2003b,c) identified all the instantaneous mechanical variables,
corresponding to those in micromorphic theory, in phase space; derived the corresponding field quantities
in physical space through the statistical ensemble averaging process; invoked the time evolution law and the
generalized Boltzmann transport equation for conserved properties to obtain the local balance laws of
mass, microinertia, linear momentum, moment of momentum, and energy for microcontinuum field theory.
In the case that the external field is the gravitational field, the balance laws obtained by Chen et al. (2002)
and Chen and Lee (2003b,¢) in a bottom-up approach agree perfectly with those obtained by Eringen and
Suhubi (1964) and Eringen (1999) in a top—down approach.
The balance laws of micromorphic continuum with E-M interactions can be expressed as

p+pV-v=0 or p+pv,;=0, (4.2)
di . ] di . .

& - D/ + vt or dil;l = ll‘mvlm + llmvkma (43)
Vet+p(f—v)+F=0 or t;,;+p(fi—v)+F=0, (4.4)
Vedht+t —s+p(l—6)+L=0 or Auyng~+tw —Sm~+p(lim—0m)+Liw=0, (4.5)

pe=AVo+t:Vv+(s—t—L):0+V-qg+ph+w
or

pé = gimVimk + taVix + (S — ty — L)V + qui + ph +w, (4.6)
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where p, v, i, v, t, s=¢, A4, e, q are the mass density, velocity, microinertia, microgyration, Cauchy
stress, microstress average, moment stress, internal energy, and heat input, respectively; f ,I,h repre-
sent body force, body moment and heat source of mechanical origin, respectively. The spin inertia o
is defined as

Ol = iml<bkm + Dknvnm) (47)

and the body force, body moment, and energy source of E-M origin are given as (Eringen and Maugin,
1990; Eringen, 1999; De Groot and Suttorp, 1972):

1 ]

F=¢°E"+(P-V)E"+ (VB) - M~ +E{J* +P—(P-V)v+P(V-v)} xB, (4.8)

L=PQE —Bo M, (4.9)

W=E - -(P+PV-v)—M -B+J -E. (4.10)
The second law of thermodynamics, also referred to as the Clausius—Duhem inequality, is written as

pin =V - (q/0) — ph/0 =0, (4.11)

where 7 is the entropy density and 0 the absolute temperature. Now the generalized Helmholtz’s free energy
Y is introduced as

V=e—0On—E -P/p. (4.12)
Then the Clausius—Duhem (C-D) inequality can be expressed as

Y [ D) % * l [k * T K Tk
—p( +n0) + Apbjes + b0y + (sy = ty = BE; + BiM7)vi + 540, — BE; = MiBi + JTE; 2 0. (4.13)

5. Constitutive relations

The fundamental laws of micromorphic electromagnetic continuum consist of a system of 27 partial
differential equations, Egs. (3.1)—(3.4), (4.2)—(4.6), and one inequality, Eq. (4.13). There are 83 unknowns:
05 Tty Vs Uity 0,1, €, by Sit = Sites 2kims> Gic> 45> Er> Prs B, My, Ji, considering that the body force, body moment,
and heat source are given. Therefore 56 constitutive relations are needed to determine the dynamics of the
thermomechanical-electromagnetic system.

The generalized Lagrangian strain tensors of micromorphic theory are defined as

OKL = Xk KAk — OKL» (5.1)
B = YuxXar — Oxz = PBrks (5.2)
Vv = Xkr X v (5.3)

and the strain rates can be obtained as
o = (Vig — Vi) Xk X1 (54)
Brr = (0t + vue) T e = Br (5.5)

Vkim = OktmXki X1 Xm M - (5.6)
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It can be easily proved that the Lagrangian strains and their material time rates of any order are
objective, and hence they are suitable for being employed as independent constitutive variables in the
development of a constitutive theory. In the same spirit, define the Lagrangian forms of the electric field
vector and the magnetic flux vector as

E}; = szk.,l(y (57)
B]( = kak‘l(; (58)

and their material time rates are obtained
E]*( = (E;: +E;U/7k)xk$1(, (59)

B = (By + Bivig)xik, (5.10)

The generalized 2nd order Piola—Kirchhoff stress tensors of micromorphic theory are defined as

Txr = jtuXewilir, (5.11)
Sk = JSulxiXi/ 2, (5.12)
ki = j)vmleMJn;{kK}_lev (5'13)

where j = det(x; k) is the Jacobian of the deformation gradient. It is straightforward to show

Tiabur + SkePrg + Tkimdxoy = it (Vg — vie) + Sk + AimOimi} (5.14)

which means {7,S,T'} are the thermodynamic conjugates of {a, f,y}. Similarly, the Lagrangian forms of
the heat input, polarization, magnetization, and current are defined as

Ok = jarXk (5.15)
Py = jP Xk, (5.16)
My = jM; X, (5.17)
Ji = I Xgh. (5.18)
Now, the Clausius—Duhem inequality (4.13) can be rewritten as
00+ 1) + Tiaarioan + T+ S + 5 QsOx — Py — My + JiEy > . (5.19)
where
Ly =ty +PRE] +MB, (5.20)
Sy =S+ MB, +M;B, = s}, (5.21)
Ty = JtaXexiiws (5.22)
Skr = Jsakxaui/ 2, (5.23)

where the superscript ‘m’ refers to the mechanical parts, i.e., if there is no E-M interaction, then Sg;, = Sy,

ty = 7. Note that the mechanical part of the microstress average S™ is also symmetric.
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In this work, the independent and dependent constitutive variables are set to be
Y: {a7ﬁ7y797V07E*)B7X}7 (524)

Z=A{1",8".T'y,n,Q,P,M",J"}, (5.25)
and, following the axiom of equipresence, at the outset the constitutive relations are written as
Z=Z(Y). (5.26)

It is noted that there are 56 dependent constitutive variables in Z. Both Y and Z are presented in
Lagrangian forms, hence, the axiom of objectivity is automatically satisfied. Substituting Eq. (5.26) into the
C-D inequality (5.19), it follows

o a [ o a [ m o a o m o a h o a N
- P (l//+’7)9_ﬂ le,K‘i‘ (TKL_p Mi)aKL+ (SKL_P ¢>ﬁ“+ <FKLM_p Alp>VKLM

o0 00 x 0Bk OVkrm
o a!// [ * o alﬁ I 1 T—
Since the inequality (5.27) is linear in 0, V0, &, B, 9, E*, B, it holds if and only if
lp:‘//(a7ﬁ7ya0aE*7B7X)7 (528)
Y
-2, (5.29)
oy
Tm — O_ .
o (5.30)
m o OY
s —p 35 (5.31)
oy
r = °o_L .
Py (5.32)
. Oy
P=—p ot (5.33)
. oy
M =—p° L .
P°3p° (5.34)
Q- -VO+0J - E* >0, (5.35)

these constitutive relations, Eqgs. (5.28)—(5.35), are further subjected to the axioms of material invariance
and time reversal. It may be stated as: the constitutive response functionals must be form-invariant with
respect to a group of transformations of the material frame of reference {X — X"} and microscopic time
reversal {t — —t} representing the material symmetry conditions and these transformations must leave the
density and charge at (X, ¢) unchanged (Eringen and Maugin, 1990). The magnetic symmetry properties of
solids cannot be discussed rationally by means of three-dimensional point groups only since magnetism is
the result of the spin magnetic moment of electrons, which changes sign upon the time reversal. In other
words, diamagnetic and paramagnetic crystals do not exhibit any orderly distribution of their spin magnetic
moments, and are therefore ‘time symmetric’. The crystallographic point group is enough for the discussion
of their material symmetries; on the other hand, for ferromagnetic, ferrimagnetic and antiferromagnetic



2106 J.D. Lee et al. | International Journal of Solids and Structures 41 (2004) 2099-2110

materials, which are characterized by an orderly distribution of spin magnetic moment, an additional
symmetry operator is needed to take care of the time reversal. For a complete account of this subject,
interested readers are referred to Shubnikov and Belov (1964) and Kiral and Eringen (1990).

6. Finite element formulation

The energy equation (4.6) can now be written as
p°0in — Ok — p°h — JE, =0, (6.1)

Multiply Eq. (6.1) by the variational temperature 30 and then integrate over the undeformed volume, to
yield

/p°61'786dV+ / 060 dV = / ®o0dV +/ 07560ds, (6.2)
v v v S,
where

@ = p°h+ JEY, (6.3)
and

0" = Ok, (6-4)

is the heat input specified at S,, part of the surface S that enclosing the volume /" and N is the outward
normal to S. It is noted that S, US; =S, where S, is part of the surface on which the temperature is
specified.

The balance laws of linear momentum and moment of momentum, Eqs. (4.4) and (4.5), can be expressed
in the Lagrangian forms as

(T i) g + p°(fi =0:) =0 (6.5)

(o Tidym) ¢ +J (85 = s5) + p° (L — 0;5) = 0 (6.6)
where

fi=fi+1{E — (PE + M;B,) }/p. (6.7)

Multiply Eq. (6.5) and Eq. (6.6) by the variational velocity vector dv; and the variational microgyration
tensor dv;;, respectively, and then integrate the sum over the undeformed volume, to get

/ (T ke ins + T 6, + ST 8B, YAV + / p°{0:50; + 0,80, } dV
V 14

= /Vpo{f;Sv,- + 1,80} dV +/S Tov;dS +/S I';8v;;dS, (6.8)

where
T7 = T 7k (6.9)
F;i = 'k XNk s (6.10)

are the surface load and surface moment specified at S, and Sr, respectively. It is noted that

S=SUS,=SrUS, (6.11)
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where the velocity and the microgyration are specified on S, and S,, respectively. In this finite element
formulation no restrictive assumption has been made to the magnitude of any independent constitutive
variables. The results are valid for coupled thermomechanical-electromagnetic phenomena. It is seen, from
Egs. (6.1) and (6.8), that to proceed further one needs the explicit constitutive expressions for the entropy 7,
the heat input vector @, and the generalized 2nd order Piola—Kirchhoff stress tensor 7™, S™, and T.

7. Linear constitutive equations

To derive the linear constitutive equations for micromorphic electromagnetic continuum, first, let the
Helmholtz’s free energy density, Eq. (5.28), be expanded as a polynomial up to second order in terms of its
arguments

1
oW = py° — T + T,?erm + SzLﬁKL + F?(LMVKLM — P,gE[*( — MlgBK — EPO”/TZ/TO — a}QTocKL — aiLTﬂKL

1
3 4 * 5 1 4 5 R
= Ay Tk — A TEy — ay TBi + 5 Ay py ok 0 + Agppn ke Puy + Axiap k1Y ve

2
- B}QMO‘KLE;\} - CIELM“KLBM + zAiLMNﬁKLﬁMN + A?QMNP[{KLVMNP - BiLMﬁKLE;/[

1 s % Tk
- C?(LMﬁKLBM + EA;(LMNPQyKLMyNPQ - B?(LMNVKLMEN - C%LMNVKLMBN - 2D}<LEKEL
1

- EDiLBKBL — Dy, EpBy, (7.1)
where T is the reference temperature,

0=T"+7T, T°>0, [T|< T, (7.2)
A}(LMN = A}IMNKLJ (7.3)
A?(LMN = AJZ\/INKL = AIZ,KMN = A?(LNM’ (7.4)
A;(LMNPQ = A?\’PQKLM’ (7.5)
A4KLMN = A4KLNM7 (7.6)
A16<LMNP = AiKMNP’ (7.7)
Sp. = Stk (7.8)
ay, = aj, (79)
B = Bl (7.10)
Cruw = Chxurs (7.11)
DII(L = Dbo (7.12)

Dy, = Dj,. (7.13)



2108 J.D. Lee et al. | International Journal of Solids and Structures 41 (2004) 2099-2110

Then Egs. (5.29)—(5.34) leads to

n=n"+T/T° + {ay, o + ag; Bry + axaVren + a?{E}} +ayBi}/p’, (7.14)
T8 = T — ax T+ Ay + Aipan Buw + AwameVave — B Err — CraneBurs (7.15)
Sk = St — i, T+ Axaay Bay + s v + A sy — BrunEre — CrunBons (7.16)
Py =T %LM - a;(LMT +A;(LMNPQVNPQ +A}5\IPKLMaNP +A?/PKLM[;NP - B;(LMNE;/ - C13<LMNBN ) (7.17)
P =P+ a}iT + Bra%m + Blax Brss + BiamiVoun + Di E; + Dy, B, (7.18)
My = M + ax T + Cpyoun + ChucBrae + Cospi Vv + Do Br + DikE;, (7.19)

where 7°, {T°,S8°, T}, P’, M" are the initial entropy, stresses, polarization, and magnetization, respec-
tively; a', a?, a® are the thermal stresses moduli; a*, @® are the pyroelectric and pyromagnetic moduli; y is the
heat capacity; A’ (i = 1,2,...,6) are the generalized elastic moduli; B', B>, B® are the generalized piezo-
electric moduli; C', C?, C* are the generalized piezomagnetic moduli; D' is the dielectric susceptibility; D>
is the magnetic susceptibility; D* is the magnetic polarizability.

Now, in view of the Clausius—Duhem inequality (5.35), the linear constitutive equations for the heat
input and the current can be obtained as

Ok = H11<L0~,L + HiLEL (7.20)
0J; = Hy,E; + Hy, 0., (7.21)

where H' is the heat conductivity, H” is the electric conductivity, H® indicates the Peltier effect, H* indi-
cates the Seebeck effect. If the Onsager postulate is followed, then there exists a dissipation function
®(Y!, E*) which is nonnegative with an absolute minimum at V0 = E* = 0 and yields

o
Ok = 3(vo/0) (7.22)
., 0o

Jp = @7 (7.23)
This implies

HII(L = HLIK’ Hl%L = HL2K7 (7.24)

HY, = H}, = Ggy, (7.25)
and

_|H" G
H = G (7.26)

is positive definite. All the above-mentioned material moduli may be functions of the Lagrangian coor-
dinate X and the reference temperature 7°.

On the other hand, from Egs. (5.24)—(5.26), it is seen that in general Q@ and J* are functions of the three
generalized Lagrangian strains, temperature, temperature gradient, electric field, magnetic flux, and the
Lagrangian coordinate. For isotropic material in a simpler case, i.e., neglecting the effect of the third order
strain tensor y, the current and the heat input can be rewritten as
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0= 0( B, VO,.E",B,S, X), (7.27)
J'=J' (2,8, V0,E", B,S, X), (7.28)
where
1
L =5 (oke + ok + Bro) = erx, (7.29)
1
Sk = 3 EKLM LM (7.30)

It should be remarked that (1) e, will be reduced to u( ;,)—the classical macro-strain tensor in the case
of small deformation, and (2) B and S are axial vectors and transformed as

B=RB det(R), S = RSdet(R), (7.31)
while the absolute vectors E* and V0 are transformed as
_ 00

=—=R E* = RE* 32
V|0 o Vo, , (7.32)
where

X = RX. (7.33)

Now, according to Wang’s representation theorem for isotropic functions (Wang, 1970, 1971), it follows

0 = CE" 4 ;Y0 + c38E" + ¢4V 0 + ¢s82E* + ¢8>V 0 + c1BE* + cspVO + cof*E* + ¢10p*V 0
+ B X E 4 ¢nBx VO +c138 X E" 4+ 148 X VO + ¢15(ef — Pe)E* + c16(ep — P&)VO
+cin[(B-B)E" — (B E")B] + ci5[(B- B)VO — (B-V0)B] + cip[(S- S)E" — (S E7)S]
+[(S-8)VO = (S-VO0)S] + co[(B-E)S — (S E)B] + c»[(B-VO)S — (S V0)B
+ cn[e(E" X B) — (¢E") x B] + c4[e(VO x B) — (¢V0) x B] + cy5[e(E* x S) — (¢E*) x S]
+ 026[3(V0 x 8) — (eV0) x S| + c[B(E* x B) — (BE") X B] + c35[B(VO x B) — (BV0) x B]
+cn[B(E" X S) — (BE") x S|+ c3[B(VO x S) — (BVO) x S, (7.34)

= d\E" + d,V0 + dseE* + dyeV0 + dse’E* + dge’ V0 + d; BE* + ds V0 + dofPE* + dyofFV0
+dB x E* +dnB x V0 +di3S x E + diuS x V0 + dyis(ep — pe)E* + dyo(ep — Pe) VO
+dy7[(B- B)E* — (B- E")B] + dys[(B- B)VO — (B -V0)B] +dys[(S - S)E" — (S - E*)S]
+dy[(S - S)VO — (S - VOS] + do[(B- E)S — (S - E*)B] + dy[(B-V0)S — (S - V0)B]

[
+ dy[e(E* x B) — (¢E”) X B] + dule(V0 x B) — (eV0) X B] + dys[e(E* x S) — (¢E*) x §]
+ dr[e(VO x S) — (eV0) x S|+ dyr[B(E” x B) — (BE") x B] + dx[B(VO x B) — (BV0) x B]
+dy[B(E" x S) — (BE") x 8]+ dx[B(VO x S) — (BVO) x S], (7.35)
where ¢; and d; (i =1,2,...,30) are functions of 0, X, and the invariants made from two 2nd order

symmetric tensors ¢ and f, two absolute vectors E* and V0, and two axial vectors B and S. The constitutive
functions, ¢; and d;, are subjected to the Clausius—Duhem inequality (5.35).

From Egs. (7.34) and (7.35), the Peltier effect (electric field producing heat flow) and the Seebeck effect
(temperature gradient producing current) are clearly seen. Also, the second order vectorial effects are
noticed: (1) ¢3, ¢s, ¢7, and ¢y indicate that strains produce an anisotropic Peltier effect, (2) ¢, shows that
heat flows perpendicular to B and V6, which is the Righi-Leduc effect, (3) ¢;; shows that heat flows
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perpendicular to B and E*, which is the Ettingshausen effect, (4) dy, ds, ds, and d)o indicates that strains
produce an anisotropic Seebeck effect, (5) dy; gives the Hall effect—current flows perpendicular to B and E*,
and (6) d, gives the Nernst effect—current flows perpendicular to B and V0. Furthermore, the axial vector
S, which is equivalent to the anti-symmetric strain tensor representing the difference between the macro-
motion and the micro-motion, has a similar effect as the magnetic flux vector B. It is interesting to see that if
micromorphic theory is reduced to classical continuum theory, then Egs. (7.34) and (7.35) become

Q = ClE* + szg + C38E* + c4sV0 + C582E* + 0682V0 + C“B x E* + ClzB x Vo
Y en[(B-B)E — (B-E')B] +cis[(B- B)VO — (B-VO)B] + cxse(E* x B) — (sE*) x B]
+ 024[8(V9 X B) — (sVH) X B], (736)

J = dlE* + dgV@ + d38E* + d4sV0 + d582E* + d682V0 + d“B x E* + dlzB x VO
+dy[(B-B)E"— (B-E")B]+dis[(B-B)VO — (B-V0)B] + dy[e(E* x B) — (¢E™) x B]
+ du[e(VO x B) — (eV0) x B. (7.37)

The differences between Eq. (7.34) and Eq. (7.36) and between Eq. (7.35) and Eq. (7.37) are the effects
due to the microstructure and the micro-motion.
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